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Main Ideas

e To understand numerical diffusion due to resetting of parti-
cles in the modified numerical algorithm (called Vlasov-PIC or
“VP” method), that encompasses the ¢ f particle-in-cell (PIC)
method and a continuum method (Vlasov-like), as first ex-
plained by Denavit [1].

e The importance:

1. Qualitatively express how resetting the particles (reconstruc-
tion) induces diffusion.

2. May help solve the “growing weight problem” in 0 f particle
simulation of plasma turbulence |3, 5|.



Viasov/PIC (“VP”) Method

e Algorithm

— load markers uniformly on phase-space (x, v, @:v lattice
— evolve lattice points as if particles

— interpolate 6 f on the phase-space grid (z, v, @:v

— Unique to “VP” method:

x redeposit 0 f marker on original vertex after M time steps

- call this reconstruction or resetting of the particles

* M=1 is Vlasov like, M=(numerical co) is § f-PIC and M
in between is hybrid

— obtain density at spatial grid points (z,y) and calculate re-
sulting field



Diffuston Rate Theory

The following is the analytical description of reconstruction in-
duced diffusion|1]. Consider theory in 1-D.

e After marker particles have been advanced M time-steps they
now have positions y; and the distribution function is

= fio(y —y;)
j

where 7 counts all the marker particles.

e Now, reconstruct using weight function:
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What 1s lost with M\ vs. f

Fourier transtorm both Wmsa f and call these the characteristic
functions of the distribution functions
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Let y =y — y;, then
~ w @ . _ . B
mA\A@v — \M&ab %@vms\a@@;&év&@

I
t'w
%
Ny
S
D/‘\
@S
%
Ny
Nagdl
[
Nag

S0,
H(ky) = W (ky) MU @%@S
J

Thus comparing (1) and (2) we get:
H(ky) = W(ky)H (ky)



What is lost with f vs. f (cont.)

So we have the characteristic function:

~

H(ky) = W (ky)H (k)

and if we define:

then,

If we reconstruct m-times then, by tnduction,

~

H(ky;m) = H(ky;m = 0) - (1 — D(ky))™.



What is lost with f vs. f (cont.)

Consider \@W@ < 1, then,
(1= D(ky))™ &2 e~ ™Dk,
thus,
H (ky;m) = H(ky;m = 0) - e~ Diky), (4)

So, in Fourier space, we see the effect of the reconstruction as a
diffusion process.



Problem we are studing.

Figure 1: “Slab” geometry with temperature and density gradient in —x

e Strong Magnetic Field

A

B=PByz+0y,0<<1

e Fivolution Equation
10y + v - 4_%\. =0



Calculation of D1(ky) =1 — Wi(ky)
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The Fourier Transform of such a piecewise-continuous function is

cos(k,) — 1
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Calculation of Do(ky) =1 — Wi(ky)

Quadratic weight function [4] ah
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The Fourier Transform of such a piecewise-smooth function is
sin(3ky) — 3sin(sky)
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Simulation Echoes

We will use simulation echoes as an indicator of reconstruction
induced diffusion.

The qualities of the echoes are:

e existence because system has no external fields

e which allows for the distribution to reorder

e echo period 7 = m.We

For our simulation, length of y = 16, Av = mu and 6 = .0128,
resulting in 7 = 10000.

We analyzed the (1,1) mode, which is equivalent to



Frample of simulation echoes, using wo.

Fourier Trans. of delta-f
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Figure 2: M=00, we never reset the particles (PIC method).

Not resetting the particles results in no diffusion.



Reconstruction diffusion, M=600, using w-.

Fourier Trans. of delta-f
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Figure 3: We reset the particles every 6000[time], 1 between each echo.

Note that there is little diffusion.



Reconstruction diffusion, M=100, using w-.

Fourier Trans. of delta-f
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Fourier Trans. of delta-f
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Figure 4: We reset the particles every 1000[time], 10 times between each echo.

We see the result of such resets as a decrees of the echo amplitude.



Reconstruction diffusion, M=20 ,using w-.

Fourier Trans. of delta-f
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Figure 5: We reset the particles every 200[time],50 times between each echo.

We now see more diffusion due to the often resetting of particles.



Reconstruction diffusion, M=1, using w>.

Fourier Trans. of delta-f
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Figure 6: We reset the particles every 10[time], 1000 times between each echo.

We see a great decrease in the echo amplitude due to many resets.



techo

Induced Diffusion: e~ Dlky)*X¢ 17

Theory | Dy (k,) = 3.2086361 x 102 Dy(k;)) = 4.8090913 x 102

m: times reset | Di(ky) X 107° | Do(ky) x 1077
1000 2.0456910%x 1072 |2.04461812x 10>

200 2.9414892x 1073 | 2.9280185%x 10>
100 3.0385852x 107° | 3.0094981 x10°
50 3.1303167x107° | 3.0689835%x 10>
20 3.0524134x 10| 2.9017329x 10~
10 2.7191638%x107° | 3.0187368x10°

m=1,M=600 |3.6356449x 10~ 1.8238425x10~"
m=0,M=1000|4.3511390x10~°| 5.3644180x 10"

Table 1: Simulation values from ratio of echo amplitudes




Results of diffuston due to reconstruction
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Figure 7: Reconstructing less induces much less diffusion. This is for the quadratic interpolation.

The less times we reconstruct gives less diffusion.



Conclusion

e We have a qualitative way to describe repeated resetting of the
particles induced numerical diffusion.

e What is next?

— Denavit’s analysis predicts more diffusion from the higher
order interpolation reconstruction schemes. Understand dis-
crepancy with simulation data.

— Further investigate the nature of the plasma simulation echoes
and influence by such reconstruction.
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